Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid

نویسندگان

  • Zhoutong Sun
  • Yuanyuan Ning
  • Lixia Liu
  • Yingmiao Liu
  • Bingbing Sun
  • Weihong Jiang
  • Chen Yang
  • Sheng Yang
چکیده

BACKGROUND Mandelic acid (MA), an important component in pharmaceutical syntheses, is currently produced exclusively via petrochemical processes. Growing concerns over the environment and fossil energy costs have inspired a quest to develop alternative routes to MA using renewable resources. Herein we report the first direct route to optically pure MA from glucose via genetic modification of the L-phenylalanine pathway in E. coli. RESULTS The introduction of hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis into E. coli led to a yield of 0.092 g/L S-MA. By combined deletion of competing pathways, further optimization of S-MA production was achieved, and the yield reached 0.74 g/L within 24 h. To produce R-MA, hydroxymandelate oxidase (Hmo) from Streptomyces coelicolor and D-mandelate dehydrogenase (DMD) from Rhodotorula graminis were co-expressed in an S-MA-producing strain, and the resulting strain was capable of producing 0.68 g/L R-MA. Finally, phenylpyruvate feeding experiments suggest that HmaS is a potential bottleneck to further improvement in yields. CONCLUSIONS We have constructed E. coli strains that successfully accomplished the production of S- and R-MA directly from glucose. Our work provides the first example of the completely fermentative production of S- and R-MA from renewable feedstock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering of Escherichia coli for production of 2‐Phenylethylacetate from L‐phenylalanine

In order to meet the need of consumer preferences for natural flavor compounds, microbial synthesis method has become a very attractive alternative to the chemical production. The 2-phenylethanol (2-PE) and its ester 2-phenylethylacetate (2-PEAc) are two extremely important flavor compounds with a rose-like odor. In recent years, Escherichia coli and yeast have been metabolically engineered to ...

متن کامل

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

Gene expression and activity of phenyl alanine amonialyase and essential oil composition of Ocimum basilicum L. at different growth stages

Phenylalanine amonia-lyase (PAL) is one of the most important enzymes that plays a key role in regulationof phenylpropanoid production in plants. It catalyzes the first step of the phenylpropanoid pathway in whichL-phenylalanine is deaminated to trans-cinnamic acid. This step is significant for metabolic engineering andhyper-expression of the major phenylpropanoid, methyl chav...

متن کامل

Genetic engineering of Escherichia coli to improve L-phenylalanine production

BACKGROUND L-phenylalanine (L-Phe) is an essential amino acid for mammals and applications expand into human health and nutritional products. In this study, a system level engineering was conducted to enhance L-Phe biosynthesis in Escherichia coli. RESULTS We inactivated the PTS system and recruited glucose uptake via combinatorial modulation of galP and glk to increase PEP supply in the Xllp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2011